Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering
نویسندگان
چکیده
Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generate novel electrospun polymeric scaffolds composed of poly-D/L-lactide and poly-L-lactide in the ratio 50:50. Scanning electron microscopic analyses revealed that the generated poly(D/L-lactide-co-L-lactide) electrospun hybrid microfibers possessed a unique porous high surface area mimicking native extracellular matrix (ECM). To assess cytocompatibility, we isolated dermal fibroblasts from human skin biopsies. After 5 days of in vitro culture, the fibroblasts adhered, migrated and proliferated on the newly created 3D scaffolds. Our data demonstrate the applicability of electrospun poly(D/L-lactide-co-L-lactide) scaffolds to serve as substrates for regenerative medicine applications with special focus on skin tissue engineering.
منابع مشابه
Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.
Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of...
متن کاملBiomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.
The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and hi...
متن کاملElectrospun nanofibrous structure: a novel scaffold for tissue engineering.
The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications. Electrospinning is a process whereby ultra-fine fibers are formed in a high-voltage electrostatic field. The elect...
متن کاملElectrospinning of Poly(L-lactide-co-D, L-lactide)
Electrospinning method was used to fabricate poly(L-lactide-co-D,L-lactide) (PLDLA) nanofiber non-woven membranes. The structure and morphology of the electrospun membranes were investigated by a scanning electron microscope (JEOL) after a gold coating. The diameter of the electrospun fiber was measured by Adobe Photoshop 5.0 software from the SEM pictures. SEM images showed that the fiber diam...
متن کاملFabrication of electrospun poly(d,l lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering
BACKGROUND Adaptation of nanotechnology into materials science has also advanced tissue engineering research. Tissues are basically composed of nanoscale structures hence making nanofibrous materials closely resemble natural fibers. Adding a drug release function to such material may further advance their use in tissue repair. METHODS In the current study, bioabsorbable poly(D,L lactide-co-gl...
متن کامل